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Abstract

A linear algorithm is given for the generation of covariance
sequences for ratlonal digital filters using numerator and denominator
coefficients directly. There is no need to solve a Lyapunov equation
or to solve for the residues of a spectrum, as in other methods. By
appealing to certain results from the theory of inners we show the
algorithm provides a unique solution provided only that the filter
is stable.

Our results may be used to compute error variances due to product
rounding and signal quantization, and to generate covariance strings

@used in other studies involving second-order properties of digital

filters.




I. Introduction
There are numerous problems in the study of digital filters that

require solution of an integral like
1 -1.dz
T = 7y § W@ DT (1)
or, more generally, like
s -1, 'k dz
Tk " 7 $ H(z)H(z )z < (2)

For example, in the computation of steady-state output noise variance
02 due to fixed-point quantization, one needs 02 = (A2/12)r0. where A
is the quantization step size and H(z) is the transfer function between
the quantization noise source and the filter output. The same kind of
computation is required for the computation of output noise variance
due to input signal quantization. More generally, sequences like

(rk}g are required in the study of model reduction procedures for
approximating high-order filters with low-order ones.

The most obvious way to compute r, is to perform the indicated

k
contour integration by evaluating residues. Mitra, et. al. [2] have
tabulated the appropriate residues for generic terms arising in the

computation of r With some tedium the results may be generalized

0.
to handle the calculation of et To apply the results of [2], one
must solve for poles of H(z). This can be a nuisance, so one looks
for alternatives.

Note r, may be written [1]}

‘k
r, = hgh +c¥Kc , k20 (3)

where K is the solution to a matrix Lyapunov equation, ok is a state

transition matrix, (hk}; is the unit pulse response sequence for H(z),




and ¢* = (1 0...0). The computational difficulty with (3) is that a
Lyapunov equation must be solved and ok determined. The latter deter-
mination involves solving for the eigenvalues of ¢, performing N
matrix multiplies to initialize the recursion to follow, or exploiting
special properties of the matrix ¢. Another alternative is to proceed
as Jury does [3] and write ro as the ratio of two determinants. This
alternative {s not particularly attractive because it does not easily
generalize to the computation of e

Our approach follows.

II. An Alternative Method

Let H(z) denote a stable autoregressive moving average digital
filter of the form

M

I bz
o ™

Eﬁ——————-—- P 1 a, bi real numbers
b alz-z

2=0

-m

H(z) =

(4)

o™
-]
N
[}
(=]

»lz| <1

Denote this filter H(z) : ARMA(N,M). There is no need for M to be less
than N. The covariance sequence associated with H(z) is {rk}:°° with

rk - r_k given by

o k dz
T " nj ¢$ s(z)z s * Vk

(5)
S(z) = H(z)H(z-l)

Here the contour C lies within the region of absolute convergence of
H(z). The contour may be chosen to be the unit circle in which case
S(z = exp(j2nf)) is the spectrum (or magnitude-squared frequency

response) corresponding to H(z).
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The unit pulse sequence corresponding to H(z) is {hk}‘:w with

0 , k<0 |
bk - I a hk—n s K20
n=1
Here bk is assumed zero for k > M+l. The covariance sequence is
related to the unit pulse sequence as follows:
- b hn hn+k s B2D
n=0
(7
T T
Substitute (6) into (7) to get
N
) I - =d , k>0
=0 O k-n k
(8)
M-k
d = 3 hb
k a=0 P n+k

Note dk = 0 for k > M+l, in which case the (rk} sequence behaves just
like a purely autoregressive one. That is, the sequence {rk} satisfies
a linear homogeneous difference equation for k > M + 1,

From (8) it is clear that the covariance sequence may be generated

recursively. The trick is to initialize the recursion by finding L

for 0 < k < N. Write out (8) for k = 0,1,...N:

Ar = d
a, a, a, a, aN7
al a2+a0 a3 ab aN 0
A a, a3+al a4+a0 as o e ay 0 0
a, a6+a2 a5+a1 agta, . . . &y 0 . 0 9)
_'N gy * e al ao-




a, = 1
- (ro, rl.....rN) d’ = (do. dl""'dN)
The matrix A is generated as follows: begin with the first row
th
(ao. ar, 82....,&“); left-shift this row (n-1) times and add the m

overflow to the (n,m+l) term to get the nth row. Thus the (i,j) element

of matrix A is

a for j =1 ek
{A)i.j -
1+j -2 + a, 1-4 for § > 1
where ays al.....an are defined in (4) and ., " 0 for 1 < 0 and 1 > N.

For example, the fourth row is (a . ab+a2. as+al, a +a0.... ays Osnsins0)s

See Appendix I of [4]. The right-most triangular region of the matrix

consists of zeros.

The Method. The solution method is to generate {hk): from (6), solve

(9) for r, and then use {hk}. {an)g , and {bm}g to generate an arbi-

trarily long finite-length version of {rk}tco from (8). If only {rk}g

is required (as in applications requiring only ro). then only (9)

must be solved using standard techniques for solving linear equations.
The same procedures were outlined in [4] for generating covariance

sequences for autoregressive filters. For autoregressive filters,

dn = hg and dk =0, k > 0. The matrix A has also arlsen In Jury's

work [5].

III. Comments on Unicity

The connection between the {an}g and {bm}g parameters of an ARMA(N,M)
filter H(z) and the corresponding covariance sequence {rk}fO is unique,
provided H(z) is stable and minimum phase and there are no pole-zero

cancellations. If H(z) is stable and there exist no pole-zero cancella-
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tionus, but H(z) is not minimum phase, then corresponding to H(z) is a
unique {rkl:' , but not vice-versa. Thus given the feedback and feed-
forward parameters (ln}: and {bml: for a stable H(z) one may solve for

a unique r from (9) and recursively get the corresponding unique covari-
ance sequence {rk):’0 . The following theorem is arcane and relevant.

Theorem: The Matrix A is Nonsingular for Stable Filters. Let H(z)

be the transfer function of a stable ARMA(N,M) filter, as defined in
N

(4). That is, the roots of A(z) = ¥ anz-“ lie strictly inside the
n=0

unit circle [z] = 1. Then the matrix A of (9) is nonsingular and

the solution for r in (9) is unique.

Proof: Rotate the matrix A by n/2 and interchange the order of columns

to obtain the matrix

N - .5 N ]
a a2+ao asta, aA+a2 e aN_J
we=Ja, \y agba,  aghay (1)
0
0 0 () TR R a
LQN o -

and preserve |@]| = |A|. Define

Al(z) = zN A(2)

N
= I anzu‘n
n=0
b |
N (12)
G n
= I t‘“ ]
n=()
" - A

The roots of A,(z) lie inside |z] = 1 by virtue of the fact that the

roots of A(z) do. Jury [5] shows that necessary and sufficient con-




ditions for the roots of A, (z) to lie inside |z| = 1 are

1) AGD >0 , -1)" A -1 >0

'
n-1

In order to relate the determinant of 2 to this stability criterion,

11) A X ﬁYn-l positive innerwise

n-1

define
A - - ™~ -
; an a1 =2 "°° 3 0 0D L a,
i £ 0 an an—l al A J a, al
n+l 0 a . n+l
5 8,
Lo anJ _80 2n
(13)
It follows from Jury [5] that
n —
200} = |X L+ o] = DA WA Da | (14)

If H(z) is stable, it follows that A, (:1)# 0, |o ;| ¥ 0, and
therefore that |@] = |A| # 0. Q.E.D.

The following second-order example is illustrative.

This matrix is nonsingular provided a, ¥ 1 and a, 4 t(a2+1). These

1
conditions are illustrated in Figure 1. Thus A is nonsingular on the
two dimensional plane (31. 12). minus the boundary lines illustrated.
Note the interior of these lines is the region of stability for a

second-order filter. Thus for a stable second-order filter the matrix

le: Assume H(z) 1s second order. Then
1 al 32

A= a, az+1 0 (15)
a, a 1




A 1s nonsingular. The implication does not go the other way. All
the (al,az) pairs outside the illustrated boundaries also give nonsingu-
lar A, but unstable H(z). Solution of (9) for such pairs gives (rk}
sequences that are not covariance sequences.
IV. Remarks

The results presented here may be used to compute error variances
in finite word-length digital filters and to generate covariance strings
{rk}g for use in model reduction procedures and the like. The computa-

tions seem simpler than those of [6] and generalize the results of [2]-

[4]. Software is available from the authors upon written request.
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Figure 1. Regions of Stability and Nonsingularity
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